alexa PONDR-FIT: a meta-predictor of intrinsically disordered amino acids.
Immunology

Immunology

Journal of Vaccines & Vaccination

Author(s): Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN

Abstract Share this page

Protein intrinsic disorder is becoming increasingly recognized in proteomics research. While lacking structure, many regions of disorder have been associated with biological function. There are many different experimental methods for characterizing intrinsically disordered proteins and regions; nevertheless, the prediction of intrinsic disorder from amino acid sequence remains a useful strategy especially for many large-scale proteomic investigations. Here we introduced a consensus artificial neural network (ANN) prediction method, which was developed by combining the outputs of several individual disorder predictors. By eight-fold cross-validation, this meta-predictor, called PONDR-FIT, was found to improve the prediction accuracy over a range of 3 to 20% with an average of 11% compared to the single predictors, depending on the datasets being used. Analysis of the errors shows that the worst accuracy still occurs for short disordered regions with less than ten residues, as well as for the residues close to order/disorder boundaries. Increased understanding of the underlying mechanism by which such meta-predictors give improved predictions will likely promote the further development of protein disorder predictors. Access to PONDR-FIT is available at www.disprot.org.

This article was published in Biochim Biophys Acta and referenced in Journal of Vaccines & Vaccination

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords