alexa Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): Pek YS, Gao S, Arshad MS, Leck KJ, Ying JY

Abstract Share this page

Abstract We have created a porous bioresorbable nanocomposite bone scaffold that chemically, structurally and mechanically matched natural bone so that it could be recognized and remodeled by natural bone. Containing collagen fibers and synthetic apatite nanocrystals, our scaffold has high strength for supporting the surrounding tissue. The foam-like scaffold has a similar microstructure as trabecular bone, with nanometer-sized and micron-sized pores. The apatitic phase of the scaffold exhibited similar chemical composition, crystalline phase and grain size as the trabecular bone apatite. The nanocomposite scaffold demonstrated excellent bioactivity for promoting cell attachment and proliferation. It was osteoconductive and successfully healed a non-union fracture in rat femur as well as a critical-sized defect in pig tibia. This article was published in Biomaterials and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th International Conference on Tissue Engineering and Regenerative Medicine
    August 23-24 , 2017 San Francisco, California ,USA
  • 8th International Conference on Tissue Science and Regenarative Medicine
    September 11-12, 2017 Singapore City, singapore
  • 9th Annual Conference on Stem Cell and Regenerative Medicine
    Sep 25-26, 2017 Berlin, Germany
  • 10th World Congress on Stem Cell and Biobanking
    October 23-24, 2017 Osaka, Japan

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version