alexa Positive feedbacks promote power-law clustering of Kalahari vegetation.
Environmental Sciences

Environmental Sciences

Journal of Ecosystem & Ecography

Author(s): Scanlon TM, Caylor KK, Levin SA, RodriguezIturbe I

Abstract Share this page

Abstract The concept of local-scale interactions driving large-scale pattern formation has been supported by numerical simulations, which have demonstrated that simple rules of interaction are capable of reproducing patterns observed in nature. These models of self-organization suggest that characteristic patterns should exist across a broad range of environmental conditions provided that local interactions do indeed dominate the development of community structure. Readily available observations that could be used to support these theoretical expectations, however, have lacked sufficient spatial extent or the necessary diversity of environmental conditions to confirm the model predictions. We use high-resolution satellite imagery to document the prevalence of self-organized vegetation patterns across a regional rainfall gradient in southern Africa, where percent tree cover ranges from 65\% to 4\%. Through the application of a cellular automata model, we find that the observed power-law distributions of tree canopy cluster sizes can arise from the interacting effects of global-scale resource constraints (that is, water availability) and local-scale facilitation. Positive local feedbacks result in power-law distributions without entailing threshold behaviour commonly associated with criticality. Our observations provide a framework for integrating a diverse suite of previous studies that have addressed either mean wet season rainfall or landscape-scale soil moisture variability as controls on the structural dynamics of arid and semi-arid ecosystems. This article was published in Nature and referenced in Journal of Ecosystem & Ecography

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords