alexa Post-depositional stability of long-chain alkenones under contrasting redox conditions
Agri and Aquaculture

Agri and Aquaculture

Journal of Marine Science: Research & Development

Author(s): F G PRAHL, G J DE LANGE, M LYLE

Abstract Share this page

PRYMNESIOPHYTE algae, which include the coccolithophorid species Emiliania huxleyi 1, are the recognized biological source of a series of long-chain (C37, c38, 39, unsaturated methyl and ethyl ketones2 widely observed in marine sediments3. Studies of E. huxleyi in culture have demonstrated that these biomarkers are attractive geochemical tools for palaeoceanographic study. No-tably, unsaturation patterns within the alkenone series change regularly with growth temperature 3–5 and the total alkenone abundance in the living plant cell is relatively constant, accounting for 5–10% of the total cellular organic carbon5. If these com-pounds are relatively well-preserved in sediments, profiles of alkenone unsaturation patterns and total alkenone concentration with depth in dated deep-sea cores6–8 provide a temporal record of sea surface temperatures and the productivity of an important group of marine phytoplankton3–5. Here we analyse the long-chain alkenone composition of sediment samples from above and below an oxidation front in an ungraded turbidite layer9 deposited 140 ±12 kyr BP in the Madeira Abyssal Plain10, to evaluate the post-depositional stability of these biomarkers under contrasting redox conditions. The results demonstrate that >85% of the total amount of these compounds is degraded over ~8 kyr as a consequence of diffusion-controlled oxidation10. Remarkably, such extensive degradative loss has little effect on the unsaturation pattern of the residual biomarker series. Thus, we find that long-chain alkenones provide reliable indicators of sea surface temperature in the ocean. The total abundance of these biomarkers in sediments, however, is controlled not only by prymnesiophyte productivity, but also by their degree of exposure to oxidative degradation in the sedimentary process.

  • To read the full article Visit
  • Subscription
This article was published in Nature and referenced in Journal of Marine Science: Research & Development

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords