alexa Potassium channel conductance: a mechanism affecting hair growth both in vitro and in vivo.
Dermatology

Dermatology

Hair Therapy & Transplantation

Author(s): Buhl AE, Waldon DJ, Conrad SJ, Mulholland MJ, Shull KL,

Abstract Share this page

Abstract The opening of intracellular potassium channels has been suggested as a mechanism regulating hair growth. Enhancing the flux of potassium ions is a mechanism shared by several structurally diverse antihypertensive agents including minoxidil sulfate (the active metabolite of minoxidil), pinacidil, P-1075 (a potent pinacidil analog), RP-49,356, diazoxide, cromakalim, and nicorandil. Of these drugs, minoxidil, pinacidil, and diazoxide have been reported to elicit hypertrichosis in humans. This potassium channel hypothesis was examined by testing these drugs for effects on hair growth both in vitro and in vivo. For the in vitro studies, mouse vibrissae follicles were cultured for 3 d with drug and the effects on hair growth were measured by metabolic labeling. All drugs, except diazoxide, enhanced cysteine incorporation into the hair shafts of the cultured vibrissae. Diazoxide was poorly soluble and thus was tested only at low doses. Minoxidil, P-1075, cromakalim, and RP-49,356 were also evaluated in vivo by measuring hair growth effects in balding stumptail macaque monkeys. The drugs were administered topically to defined sites on balding scalps once per day for 4-5 months and the amount of hair grown was determined by monthly measurements of shaved hair weight. Three of the drugs produced significant increases in hair weight whereas, the RP-49,356 had no effect. These studies provide correlative evidence that the opening of potassium channels is an important regulatory mechanism for hair growth. This provides the impetus for further studies on this potentially important mechanism affecting hair biology.
This article was published in J Invest Dermatol and referenced in Hair Therapy & Transplantation

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords