alexa Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Data Mining in Genomics & Proteomics

Author(s): Nilsson SK, Dooner MS, Tiarks CY, Weier HU, Quesenberry PJ

Abstract Share this page

Abstract Increasingly, allogeneic and even more often autologous bone marrow transplants are being done to correct a wide variety of diseases. In addition, autologous marrow transplants potentially provide an opportune means of delivering genes in transfected, engrafting stem cells. However, despite its widespread clinical use and promising gene therapy applications, relatively little is known about the mechanisms of engraftment in marrow transplant recipients. This is especially so in the nonablated recipient setting. Our data show that purified lineage negative rhodamine 123/Hoechst 33342 dull transplanted hematopoietic stem cells engraft into the marrow of nonablated syngeneic recipients. These cells have multilineage potential, and maintain a distinct subpopulation with "stem cell" characteristics. The data also suggests a spatial localization of stem cell "niches" to the endosteal surface, with all donor cells having a high spatial affinity to this area. However, the level of stem cell engraftment observed following a transplant of "stem cells" was significantly lower than that expected following a transplant of the same number of unseparated marrow cells from which the purified cells were derived, suggesting the existence of a "nonstem cell facilitator population," which is required in a nonablated syngeneic transplant setting.
This article was published in Blood and referenced in Journal of Data Mining in Genomics & Proteomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version