alexa Potential of magnetic resonance-guided focused ultrasound for intracranial hemorrhage: an in vivo feasibility study.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Harnof S, Zibly Z, Hananel A, Monteith S, Grinfeld J,

Abstract Share this page

Abstract BACKGROUND: Because of the paucity of effective treatments for intracranial hemorrhage (ICH), the mortality rate remains at 40\%-60\%. A novel application of magnetic resonance-guided focused ultrasound (MRgFUS) for ICH may offer an alternative noninvasive treatment through the precise delivery of FUS under real-time MR imaging (MRI) guidance. The purpose of the present study was to optimize the parameters for rapid, effective, and safe trans-skull large clot liquefaction using in vivo porcine and ex vivo human skull models to provide a clinically relevant proof of concept. METHODS: The transcranial effectiveness of MRgFUS was tested ex vivo by introducing a porcine blood clot into a human skull, without introducing tissue plasminogen activator (tPA). We used an experimental human head device to deliver pulsed FUS sonications at an acoustic power of 600-900 W for 5-10 seconds. A 3-mL clot was also introduced in a porcine brain and sonicated in vivo with one 5-second pulse of 700 W through a bone window or with 3000 W when treated through an ex vivo human skull. Treatment targeting was guided by MRI, and the tissue temperature was monitored online. Liquefied volumes were measured as hyperintense regions on T2-weighted MR images. RESULTS: In both in vivo porcine blood clot through a craniectomy model and the porcine clot in an ex vivo human skull model targeted clot liquefaction was achieved, with only marginal increase in temperature in the surrounding tissue. CONCLUSIONS: Our results demonstrate the feasibility of fast, efficient, and safe thrombolysis in an in vivo porcine model of ICH and in 2 ex vivo models using a human skull, without introducing tPA. Future studies will further optimize parameters and assess the nature of sonication-mediated versus natural clot lysis, the risk of rebleeding, the potential effect on the adjacent parenchyma, and the chemical and toxicity profiles of resulting lysate particles. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved. This article was published in J Stroke Cerebrovasc Dis and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords