alexa Potentiation of large conductance, Ca2+-activated K+ (BK) channels by alpha5beta1 integrin activation in arteriolar smooth muscle.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Wu X, Yang Y, Gui P, Sohma Y, Meininger GA,

Abstract Share this page

Abstract Injury/degradation of the extracellular matrix (ECM) is associated with vascular wall remodelling and impaired reactivity, a process in which altered ECM-integrin interactions play key roles. Previously, we found that peptides containing the RGD integrin-binding sequence produce sustained vasodilatation of rat skeletal muscle arterioles. Here, we tested the hypothesis that RGD ligands work through alpha5beta1 integrin to modulate the activity of large conductance, Ca(2+)-activated K(+) (BK) channels in arteriolar smooth muscle. K(+) currents were recorded in single arteriolar myocytes using whole-cell and single-channel patch clamp methods. Activation of alpha5beta1 integrin by an appropriate, insoluble alpha5beta1 antibody resulted in a 30-50\% increase in the amplitude of iberiotoxin (IBTX)-sensitive, whole-cell K(+) current. Current potentiation occurred 1-8 min after bead-antibody application to the cell surface. Similarly, the endogenous alpha5beta1 integrin ligand fibronectin (FN) potentiated IBTX-sensitive K(+) current by 26\%. Current potentiation was blocked by the c-Src inhibitor PP2 but not by PP3 (0.1-1 mum). In cell-attached patches, number of open channels x open probability (NP(o)) of a 230-250 pS K(+) channel was significantly increased after FN application locally to the external surface of cell-attached patches through the recording pipette. In excised, inside-out patches, the same method of FN application led to large, significant increases in NP(o) and caused a leftward shift in the NP(o)-voltage relationship at constant [Ca(2+)]. PP2 (but not PP3) nearly abolished the effect of FN on channel activity, suggesting that signalling between the integrin and channel involved an increase in Ca(2+)sensitivity of the channel via a membrane-delimited pathway. The effects of alpha5beta1 integrin activation on both whole-cell and single-channel BK currents could be reproduced in HEK 293 cells expressing the BK channel alpha-subunit. This is the first demonstration at the single-channel level that integrin signalling can regulate an ion channel. Our results show that alpha5beta1 integrin activation potentiates BK channel activity in vascular smooth muscle through both Ca(2+)- and c-Src-dependent mechanisms. This mechanism is likely to play a role in the arteriolar dilatation and impaired vascular reactivity associated with ECM degradation.
This article was published in J Physiol and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords