alexa Predicting cardiac autonomic neuropathy category for diabetic data with missing values.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetic Complications & Medicine

Author(s): Abawajy J

Abstract Share this page

Cardiovascular autonomic neuropathy (CAN) is a serious and well known complication of diabetes. Previous articles circumvented the problem of missing values in CAN data by deleting all records and fields with missing values and applying classifiers trained on different sets of features that were complete. Most of them also added alternative features to compensate for the deleted ones. Here we introduce and investigate a new method for classifying CAN data with missing values. In contrast to all previous papers, our new method does not delete attributes with missing values, does not use classifiers, and does not add features. Instead it is based on regression and meta-regression combined with the Ewing formula for identifying the classes of CAN. This is the first article using the Ewing formula and regression to classify CAN. We carried out extensive experiments to determine the best combination of regression and meta-regression techniques for classifying CAN data with missing values. The best outcomes have been obtained by the additive regression meta-learner based on M5Rules and combined with the Ewing formula. It has achieved the best accuracy of 99.78% for two classes of CAN, and 98.98% for three classes of CAN. These outcomes are substantially better than previous results obtained in the literature by deleting all missing attributes and applying traditional classifiers to different sets of features without regression. Another advantage of our method is that it does not require practitioners to perform more tests collecting additional alternative features.

This article was published in Comput Biol Med and referenced in Journal of Diabetic Complications & Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords