alexa Predicting small ligand binding sites in proteins using backbone structure.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Bordner AJ

Abstract Share this page

Abstract MOTIVATION: Specific non-covalent binding of metal ions and ligands, such as nucleotides and cofactors, is essential for the function of many proteins. Computational methods are useful for predicting the location of such binding sites when experimental information is lacking. Methods that use structural information, when available, are particularly promising since they can potentially identify non-contiguous binding motifs that cannot be found using only the amino acid sequence. Furthermore, a prediction method that can utilize low-resolution models is advantageous because high-resolution structures are available for only a relatively small fraction of proteins. RESULTS: SitePredict is a machine learning-based method for predicting binding sites in protein structures for specific metal ions or small molecules. The method uses Random Forest classifiers trained on diverse residue-based site properties including spatial clustering of residue types and evolutionary conservation. SitePredict was tested by cross-validation on a set of known binding sites for six different metal ions and five different small molecules in a non-redundant set of protein-ligand complex structures. The prediction performance was good for all ligands considered, as reflected by AUC values of at least 0.8. Furthermore, a more realistic test on unbound structures showed only a slight decrease in the accuracy. The properties that contribute the most to the prediction accuracy of each ligand were also examined. Finally, examples of predicted binding sites in homology models and uncharacterized proteins are discussed. AVAILABILITY: Binding site prediction results for all PDB protein structures and human protein homology models are available at http://sitepredict.org/.
This article was published in Bioinformatics and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords