alexa Prediction and characterization of T-cell epitopes for epitope vaccine design from outer membrane protein of Neisseria meningitidis serogroup B.
Materials Science

Materials Science

Journal of Nanomedicine & Biotherapeutic Discovery

Author(s): Chandra S, Singh D, Singh TR, Chandra S, Singh D, Singh TR, Chandra S, Singh D, Singh TR, Chandra S, Singh D, Singh TR

Abstract Share this page

Abstract Neisseria meningitidis serogroup B (MC58) is a leading cause of meningitis and septicaemia, principally infects the infants and adolescents. No vaccine is available for the prevention of these infections because the serogroup B capsular polysaccharide is unable to stimulate an immune response, due to its similarity with polysialic acid. To overcome these obstacles, we proposed to develop a peptide based epitope vaccine from outer membrane protein contained in outer membrane vesicles (OMV) based on our computational analysis. In OMV a total of 236 proteins were identified, only 15 (6.4\%) of which were predicted to be located in outer membrane. The major requirement is the identification and selection of T-cell epitopes that act as a vaccine target. We have selected 13 out of 15 outer membrane proteins from OMV proteins. Due to similarity of the fkpA and omp85 with the human FKBP2 and SAMM50 protein, we removed these two sequences from the analysis as their presence in the vaccine is likely to elicit an autoimmune response. ProPred and ProPred1 were used to predict promiscuous helper T Lymphocytes (HTL) and cytotoxic T Lymphocytes (CTL) epitopes and MHCPred for their binding affinity in N. meningitidis serogroup B (MC58), respectively. Binding peptides (epitopes) are distinguished from nonbinding peptides in properties such as amino acid preference on the basis of amino acid composition. By using this dataset, we compared physico-chemical and structural properties at amino acid level through amino acid composition, computed from ProtParam server. Results indicate that porA, porB, opc, rmpM, mtrE and nspA are more suitable vaccine candidates. The predicted peptides are expected to be useful in the design of multi-epitope vaccines without compromising the human population coverage.
This article was published in Bioinformation and referenced in Journal of Nanomedicine & Biotherapeutic Discovery

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords