alexa Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches.
Healthcare

Healthcare

Journal of Community Medicine & Health Education

Author(s): Wu J, Roy J, Stewart WF

Abstract Share this page

Abstract BACKGROUND: Electronic health record (EHR) databases contain vast amounts of information about patients. Machine learning techniques such as Boosting and support vector machine (SVM) can potentially identify patients at high risk for serious conditions, such as heart disease, from EHR data. However, these techniques have not yet been widely tested. OBJECTIVE: To model detection of heart failure more than 6 months before the actual date of clinical diagnosis using machine learning techniques applied to EHR data. To compare the performance of logistic regression, SVM, and Boosting, along with various variable selection methods in heart failure prediction. RESEARCH DESIGN: Geisinger Clinic primary care patients with data in the EHR data from 2001 to 2006 diagnosed with heart failure between 2003 and 2006 were identified. Controls were randomly selected matched on sex, age, and clinic for this nested case-control study. MEASURES: Area under the curve (AUC) of receiver operator characteristic curve was computed for each method using 10-fold cross-validation. The number of variables selected by each method was compared. RESULTS: Logistic regression with model selection based on Bayesian information criterion provided the most parsimonious model, with about 10 variables selected on average, while maintaining a high AUC (0.77 in 10-fold cross-validation). Boosting with strict variable importance threshold provided similar performance. CONCLUSIONS: Heart failure was predicted more than 6 months before clinical diagnosis, with AUC of about 0.76, using logistic regression and Boosting. These results were achieved even with strict model selection criteria. SVM had the poorest performance, possibly because of imbalanced data. This article was published in Med Care and referenced in Journal of Community Medicine & Health Education

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords