alexa Prediction of hematocrit and red cell deformability with whole body biological impedance.
Engineering

Engineering

Journal of Biosensors & Bioelectronics

Author(s): VarletMarie E, Aloulou I, Mercier J, Brun JF

Abstract Share this page

Abstract Bioelectrical impedancemetry has been used to evaluate hemorheological parameters in vitro but whole body impedance measurements are also correlated to some hemorheologic factors, due to their close relationship with determinants of electric properties of blood. In previous studies, we have determined a set of predictive equations for hematocrit, whole blood viscosity and plasma viscosity in both sedentary and trained individuals. In this study we aimed at verifying those findings and investigating for other equations in a sample of 62 subjects whose body composition was assessed with a multifrequency bioelectrical impedancemeter using low intensity at the following frequencies: 1, 5, 10, 50 and 100kHz. Viscometric measurements were done with a falling ball viscometer. Hematocrit was measured with microcentrifuge. We confirm that hematocrit was correlated with impedance measurements at 50 kHz (r=-0.671, p < 0.01), and describe a new predictive equation for RBC rigidity index "k" calculated with the equation of Quemada, ("k" index = 0.0003 Z50 + 1.2815; mean difference: -0.0506; 95\% confidence interval of -0.0134 to 0.00324) that is also correlated with impedance measurements at 50 kHz (r = 0.526, p < 0.01). Although the precision of these formulae is not sufficient for allowing true "predictions" of hematocrit and red cell deformability, these findings confirm that factors of viscosity are to some extent reflected by whole body electric properties. This article was published in Clin Hemorheol Microcirc and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords