alexa Prediction of membrane protein types based on the hydrophobic index of amino acids.
Biomedical Sciences

Biomedical Sciences

International Journal of Biomedical Data Mining

Author(s): Feng ZP, Zhang CT

Abstract Share this page

Abstract A new algorithm to predict the types of membrane proteins is proposed. Besides the amino acid composition of the query protein, the information within the amino acid sequence is taken into account. A formulation of the autocorrelation functions based on the hydrophobicity index of the 20 amino acids is adopted. The overall predictive accuracy is remarkably increased for the database of 2054 membrane proteins studied here. An improvement of about 13\% in the resubstitution test and 8\% in the jackknife test is achieved compared with those of algorithms based merely on the amino acid composition. Consequently, overall predictive accuracy is as high as 94\% and 82\% for the resubstitution and jackknife tests, respectively, for the prediction of the five types. Since the proposed algorithm is based on more parameters than those in the amino acid composition approach, the predictive accuracy would be further increased for a larger and more class-balanced database. The present algorithm should be useful in the determination of the types and functions of new membrane proteins. The computer program is available on request.
This article was published in J Protein Chem and referenced in International Journal of Biomedical Data Mining

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords