alexa Prediction of respiratory tumour motion for real-time image-guided radiotherapy.
Engineering

Engineering

Advances in Robotics & Automation

Author(s): Sharp GC, Jiang SB, Shimizu S, Shirato H

Abstract Share this page

Abstract Image guidance in radiotherapy and extracranial radiosurgery offers the potential for precise radiation dose delivery to a moving tumour. Recent work has demonstrated how to locate and track the position of a tumour in real-time using diagnostic x-ray imaging to find implanted radio-opaque markers. However, the delivery of a treatment plan through gating or beam tracking requires adequate consideration of treatment system latencies, including image acquisition, image processing, communication delays, control system processing, inductance within the motor, mechanical damping, etc. Furthermore, the imaging dose given over long radiosurgery procedures or multiple radiotherapy fractions may not be insignificant, which means that we must reduce the sampling rate of the imaging system. This study evaluates various predictive models for reducing tumour localization errors when a real-time tumour-tracking system targets a moving tumour at a slow imaging rate and with large system latencies. We consider 14 lung tumour cases where the peak-to-peak motion is greater than 8 mm, and compare the localization error using linear prediction, neural network prediction and Kalman filtering, against a system which uses no prediction. To evaluate prediction accuracy for use in beam tracking, we compute the root mean squared error between predicted and actual 3D motion. We found that by using prediction, root mean squared error is improved for all latencies and all imaging rates evaluated. To evaluate prediction accuracy for use in gated treatment, we present a new metric that compares a gating control signal based on predicted motion against the best possible gating control signal. We found that using prediction improves gated treatment accuracy for systems that have latencies of 200 ms or greater, and for systems that have imaging rates of 10 Hz or slower.
This article was published in Phys Med Biol and referenced in Advances in Robotics & Automation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords