alexa Predictive modeling of total healthcare costs using pharmacy claims data: a comparison of alternative econometric cost modeling techniques.
Infectious Diseases

Infectious Diseases

Epidemiology: Open Access

Author(s): Powers CA, Meyer CM, Roebuck MC, Vaziri B

Abstract Share this page

Abstract OBJECTIVE: We sought to evaluate several statistical modeling approaches in predicting prospective total annual health costs (medical plus pharmacy) of health plan participants using Pharmacy Health Dimensions (PHD), a pharmacy claims-based risk index. METHODS: We undertook a 2-year (baseline year/follow-up year) longitudinal analysis of integrated medical and pharmacy claims. Included were plan participants younger than 65 years of age with continuous medical and pharmacy coverage (n = 344,832). PHD drug categories, age, gender, and pharmacy costs were derived across the baseline year. Annual total health costs were calculated for each plan participant in follow-up year. Models examined included ordinary least squares (OLS) regression, log-transformed OLS regression with smearing estimator, and 3 two-part models using OLS regression, log-OLS regression with smearing estimator, and generalized linear modeling (GLM), respectively. A 10\% random sample was withheld for model validation, which was assessed via adjusted r, mean absolute prediction error, specificity, and positive predictive value. RESULTS: Most PHD drug categories were significant independent predictors of total costs. Among models tested, the OLS model had the lowest mean absolute prediction error and highest adjusted r. The log-OLS and 2-part log-OLS models did not predict costs accurately as the result of issues of log-scale heteroscedasticity. The 2-part model using GLM had lower adjusted r but similar performance in other assessment measures compared with the OLS or 2-part OLS models. CONCLUSION: The PHD system derived solely from pharmacy claims data can be used to predict future total health costs. Using PHD with a simple OLS model may provide similar predictive accuracy in comparison to more advanced econometric models.
This article was published in Med Care and referenced in Epidemiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords