alexa Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Rhim JW, Hong SI, Park HM, Ng PK

Abstract Share this page

Abstract Four different types of chitosan-based nanocomposite films were prepared using a solvent-casting method by incorporation with four types of nanoparticles, that is, an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. Scanning electron micrographs showed that in all of the nanocomposite films, except the Nano-silver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, that is, tensile strength increased by 7-16\%, whereas water vapor permeability decreased by 25-30\% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity. This article was published in J Agric Food Chem and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version