alexa Preparation and characterization of magnesium carbonate co-substituted hydroxyapatites.
Engineering

Engineering

Bioceramics Development and Applications

Author(s): Gibson IR, Bonfield W

Abstract Share this page

Abstract A new synthesis/processing method has been devised to produce magnesium/carbonate co-substituted hydroxyapatite ceramics that do not decompose to tricalcium phosphate (TCP) on sintering. Using this method, a series of magnesium/carbonate co-substituted hydroxyapatite (Mg/CO(3)-HA) compositions, containing between 0 and 0.35 wt \% Mg and approximately 0.9 wt \% CO(3) were prepared. Sintering the Mg/CO(3)-HA compositions in a CO(2)/H(2)O atmosphere yields a single crystalline phase that appears to be identical to stoichiometric HA. In contrast, when the compositions were prepared in the absence of carbonate and were sintered in air, the phase composition was a biphasic mixture of HA and TCP e.g. for 0.25 wt \% Mg substitution the phase composition was approximately 60\%HA/40\% TCP. Clearly, both the synthesis route and the processing (i.e. sintering) route are of importance in the production of a single-phase Mg/CO(3)-HA ceramic. Fourier transform infrared (FTIR) spectroscopy has indicated that the Mg/CO(3)-HA ceramics still contained carbonate groups after sintering at 1200 degrees C. Chemical analysis by X-ray fluorescence spectroscopy (XRF) and C-H-N analysis has shown that the cation/anion molar ratio (i.e. [Ca+Mg]/[P+C/2]) of the different compositions were 1.68(+/-0.01), which is equivalent to the Ca/P molar ratio of stoichiometric HA. Although the magnesium/carbonate co-substitution had a positive effect in preventing phase decomposition during sintering, it appeared to have a negative effect on the densification of the MgCO(3)-HA ceramics, compared to stoichiometric HA.
This article was published in J Mater Sci Mater Med and referenced in Bioceramics Development and Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords