alexa Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Kommareddy S, Amiji M

Abstract Share this page

Abstract To enhance the intracellular delivery potential of plasmid DNA using nonviral vectors, we have developed thiolated gelatin nanoparticles that can release the payload in the highly reducing environment, such as in response to glutathione. Thiolated gelatin was synthesized by covalent modification of the primary amino groups of Type B gelatin using 2-iminothiolane (Traut's reagent). The degree of thiolation of the polymers ranged from 0 to 43.71 mmol of reduced sulfhydryl (SH) groups when the amount of 2-iminothiolane was increased up to 100 mg per gram of the biopolymer. Cytotoxicity evaluations carried out by the formazan (MTS) assay showed that the thiolated gelatin prepared with 20 mg and 40 mg of 2-iminothiolane (SHGel-20 and SHGel-40) per gram of gelatin had comparable cell viability profile to that of the unmodified gelatin. In vitro release studies of fluorescein isothiocyanate (FITC)-labeled dextran (mol wt. 70 000 Da), when encapsulated in gelatin and thiolated gelatin nanoparticles (150-250 nm in diameter), was found to be affected by the presence of glutathione (GSH) in the medium. The presence of GSH was found to enhance the release by about 40\% in case of thiolated gelatin and about 20\% in gelatin nanoparticles under similar conditions of temperature and GSH concentrations. Qualitative and quantitative analysis of transfection in NIH-3T3 murine fibroblast cells by the nanoparticles carrying plasmid DNA encoding for enhanced green fluorescent protein (EGFP-N1) was done by fluorescence confocal microscopy and fluorescence-activated cell sorting (FACS). Qualitative results showed highly efficient expression of GFP that remained stable for up to 96 h. Quantitative results from FACS showed that the thiolated gelatin nanoparticles (SHGel-20) were significantly more effective in transfecting NIH-3T3 cells than other carrier systems examined. The results of this study show that thiolated gelatin nanoparticles would serve as a biocompatible intracellular delivery system that can release the payload in a highly reducing environment. This article was published in Bioconjug Chem and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords