alexa Presence and consequence of uracil in preneoplastic DNA from folate methyl-deficient rats.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Pogribny IP, Muskhelishvili L, Miller BJ, James SJ

Abstract Share this page

Abstract Uracil can arise in DNA by misincorporation of dUTP into nascent DNA and/or by cytosine deamination in established DNA. Based on recent findings, both pathways appear to be promoted in the methyl-deficient model of hepatocarcinogenesis. A chronic increase in the ratio dUTP:dTTP with folate/methyl deficiency can result in a futile cycle of excision and reiterative uracil misincorporation leading to premutagenic apyrimidinic (AP) sites, DNA strand breaks, DNA fragmentation and apoptotic cell death. The progressive accumulation of unmethylated cytosines with chronic methyl deficiency will increase the potential for cytosine deamination to uracil and further stress uracil mismatch repair mechanisms. Uracil is removed by a highly specific uracil-DNA glycosylase (UDG) leaving an AP site that is subsequently repaired by sequential action of AP endonuclease, 5'-phosphodiesterase, a DNA polymerase and DNA ligase. Since the DNA polymerases cannot distinguish between dUTP and dTTP, an increase in dUTP:dTTP ratio will promote uracil misincorporation during both DNA replication and repair synthesis. The misincorporation of uracil for thymine (5-methyluracil) may constitute a genetically significant form of DNA hypomethylation distinct from cytosine hypomethylation. In the present study a significant increase in the level of uracil in liver DNA as early as 3 weeks after initiation of folate/methyl deficiency was accompanied by parallel increases in DNA strand breaks, AP sites and increased levels of AP endonuclease mRNA. In addition, uracil was also detected within the p53 gene sequence using UDG PCR techniques. Increased levels of uracil in DNA implies that the capacity for uracil base excision repair is exceeded with chronic folate/methyl deficiency. It is possible that enzyme-induced extrahelical bases, AP sites and DNA strand breaks interact to negatively affect the stability of the DNA helix and stress the structural limits of permissible uracil base excision repair activity. Thus substitution of uracil for thymine induces repair-related premutagenic lesions and a novel form of DNA hypomethylation that may relate to tumor promotion in the methyl-deficient model of hepatocarcinogenesis.
This article was published in Carcinogenesis and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords