alexa Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars.
General Science

General Science

Journal of Astrobiology & Outreach

Author(s): Walter MR, Des Marais DJ

Abstract Share this page

Abstract Current interpretations of the early history of Mars suggest many similarities with the early Earth and therefore raise the possibility that the Archean and Proterozoic history of life on Earth could have a counterpart on Mars. Terrestrial experience suggests that, with techniques that can be employed remotely, ancient springs, including thermal springs, could well yield important information. By delivering water and various dissolved species to the sunlit surface of Mars, springs very likely created an environment suitable for life, which could have been difficult, if not impossible, to attain elsewhere. The chemical and temperature gradients associated with thermal springs sort organisms into sharply delineated, distinctive and different communities, and so diverse organisms are concentrated into relatively small areas in a predictable and informative fashion. A wide range of metabolic strategies are concentrated into small areas, thus furnishing a useful and representative sampling of the existing biota. Mineral-charged springwaters frequently deposit chemical precipitates of silica and/or carbonate which incorporate microorganisms and preserve them as fossils. The juxtaposition of stream valley headwaters with volcanoes and impact craters on Mars strongly implies that subsurface heating of groundwater created thermal springs. On Earth, thermal springs create distinctive geomorphic features and chemical signatures which can be detected by remote sensing. Spring deposits can be quite different chemically from adjacent rocks. Individual springs can be hundreds of meters wide, and complexes of springs occupy areas up to several kilometers wide. Benthic microbial mats and the resultant stromatolites occupy a large fraction of the available area. The relatively high densities of fossils and microbial mat fabrics within these deposits make them highly prospective in any search for morphological evidence of life, and there are examples of microbial fossils in spring deposits as old as 300 Myr.
This article was published in Icarus and referenced in Journal of Astrobiology & Outreach

Relevant Expert PPTs

Recommended Conferences

  • 6th International Conference on Earth Science and Climate Change
    September 18-19, 2017 Hong Kong
  • 5th International Conference and Exhibition on Mechanical & Aerospace Engineering
    October 02-04, 2017 Las Vegas, Nevada, USA
  • 2nd International Convention on Geophysics and Geotechnics
    November 8-9, 2017 Las Vegas, Nevada, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version