alexa Prevention and control of reciprocal T-B cell diversification: implications for lupus-like autoimmunity.

Author(s): Singh RR

Abstract Share this page

Abstract Autoimmunity is fundamentally a continuously evolving process. The autoimmune responses shift, drift and diversify with time not only to other epitopes in the original antigen but also to other related and sometimes to unrelated antigens. We have described a form of immune diversification--reciprocal T-B epitope spreading--where the activation of first T cells by epitopes from an autoantibody molecule could lead to help provided to a variety of B cells displaying a cross-reactive version of the original epitope. The response spreads in this way until large cohorts of T and B cells have expanded in lupus-prone mice. Such reciprocal T-B cell response can also be induced in normal animals, its extent is limited by the emergence of inhibitory T cells. The induction of such inhibitory T cells is generally impaired in lupus mice. The delivery of T cell epitopes via plasmid DNA vectors, however, can overcome this impairment in lupus mice. The inhibitory T cells thus induced can suppress autoantibody production and lupus disease by ablating or inhibiting autoreactive B cells. Thus, T-B diversification that develops spontaneously in lupus mice could be curtailed in normal animals by inhibitory T cells that emerge whenever there is an impending 'danger' of pathologic autoimmunity. We have successfully exploited this regulatory potential of the normal immune response to inhibit clinical autoimmunity. Understanding the mechanisms of autoimmune diversification in lupus mice and of its down-regulation in normal animals may pave the way for developing novel treatments for autoantibody-mediated diseases such as lupus. This article was published in Mol Immunol and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords