alexa Primary sequence independence for prion formation.
Neurology

Neurology

Journal of Alzheimers Disease & Parkinsonism

Author(s): Ross ED, Edskes HK, Terry MJ, Wickner RB, Ross ED, Edskes HK, Terry MJ, Wickner RB

Abstract Share this page

Abstract Many proteins can adopt self-propagating beta-sheet-rich structures, termed amyloid fibrils. The [URE3] and [PSI+] prions of Saccharomyces cerevisiae are infectious amyloid forms of the proteins Ure2p and Sup35p, respectively. Ure2p forms prions primarily as a result of its sequence composition, as versions of Ure2p with the prion domain amino acids shuffled are still able to form prions. Here we show that prion induction by both Ure2p and Ure2-21p, one of the scrambled versions of Ure2p, is clearly dependent on the length of the inducing fragment. For Ure2-21p, no single sequence is found in all of the inducing fragments, highlighting the sequence independence of prion formation. Furthermore, the sequence of the Sup35p prion domain can also be randomized without blocking prion formation. Indeed, a single shuffled sequence could give rise to several prion variants. These results suggest that [PSI+] formation is driven primarily by the amino acid composition of the Sup35p prion domain, and that the Sup35p oligopeptide repeats are not required for prion maintenance.
  • To read the full article Visit
  • Open Access
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords