alexa Priming in systemic plant immunity.
Biochemistry

Biochemistry

Journal of Plant Biochemistry & Physiology

Author(s): Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT

Abstract Share this page

Abstract Plants possess inducible systemic defense responses when locally infected by pathogens. Bacterial infection results in the increased accumulation of the mobile metabolite azelaic acid, a nine-carbon dicarboxylic acid, in the vascular sap of Arabidopsis that confers local and systemic resistance against the pathogen Pseudomonas syringae. Azelaic acid primes plants to accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of the AZELAIC ACID INDUCED 1 (AZI1) gene, which is induced by azelaic acid, results in the specific loss of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction in plants. Furthermore, the predicted secreted protein AZI1 is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 are components of plant systemic immunity involved in priming defenses. This article was published in Science and referenced in Journal of Plant Biochemistry & Physiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Plant Physiology & Pathology
    June 26-28, 2017 Bangkok, Thailand
  • 7th World Summit on Plant Genomics
    July 03-05, 2017 Bangkok, Thailand
  • 3rd Global Summit on Plant Science
    August 07-09, 2017 Rome, Italy
  • 2nd International Conference on Biochemistry
    Sep 21-22, 2017 Macau, Hong Kong

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords