alexa Principal component analysis for selection of optimal SNP-sets that capture intragenic genetic variation.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Horne BD, Camp NJ

Abstract Share this page

Abstract Candidate gene association studies often utilize one single nucleotide polymorphism (SNP) for analysis, with an initial report typically not being replicated by subsequent studies. The failure to replicate may result from incomplete or poor identification of disease-related variants or haplotypes, possibly due to naive SNP selection. A method for identification of linkage disequilibrium (LD) groups and selection of SNPs that capture sufficient intra-genic genetic diversity is described. We assume all SNPs with minor allele frequency above a pre-determined frequency have been identified. Principal component analysis (PCA) is applied to evaluate multivariate SNP correlations to infer groups of SNPs in LD (LD-groups) and to establish an optimal set of group-tagging SNPs (gtSNPs) that provide the most comprehensive coverage of intra-genic diversity while minimizing the resources necessary to perform an informative association analysis. This PCA method differs from haplotype block (HB) and haplotype-tagging SNP (htSNP) methods, in that an LD-group of SNPs need not be a contiguous DNA fragment. Results of the PCA method compared well with existing htSNP methods while also providing advantages over those methods, including an indication of the optimal number of SNPs needed. Further, evaluation of the method over multiple replicates of simulated data indicated PCA to be a robust method for SNP selection. Our findings suggest that PCA may be a powerful tool for establishing an optimal SNP set that maximizes the amount of genetic variation captured for a candidate gene using a minimal number of SNPs. Copyright 2003 Wiley-Liss, Inc. This article was published in Genet Epidemiol and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords