alexa Prion strain interactions are highly selective.


Journal of Alzheimers Disease & Parkinsonism

Author(s): Nilsson KP, JoshiBarr S, Winson O, Sigurdson CJ, Nilsson KP, JoshiBarr S, Winson O, Sigurdson CJ

Abstract Share this page

Abstract Various misfolded and aggregated neuronal proteins commonly coexist in neurodegenerative disease, but whether the proteins coaggregate and alter the disease pathogenesis is unclear. Here, we used mixtures of distinct prion strains, which are believed to differ in conformation, to test the hypothesis that two different aggregates interact and change the disease in vivo. We tracked two prion strains in mice histopathologically and biochemically, as well as by spectral analysis of plaque-bound PTAA (polythiophene acetic acid), a conformation-sensitive fluorescent amyloid ligand. We found that prion strains interacted in a highly selective and strain-specific manner, with (1) no interaction, (2) hybrid plaque formation, or (3) blockage of one strain by a second (interference). The hybrid plaques were maintained on additional passage in vivo and each strain seemed to maintain its original conformational properties, suggesting that one strain served only as a scaffold for aggregation of the second strain. These findings not only further our understanding of prion strain interactions but also directly demonstrate interactions that may occur in other protein aggregate mixtures.
  • To read the full article Visit
  • Open Access
This article was published in J Neurosci and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version