alexa Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): KosinskiCollins MS, Flaugh SL, King J

Abstract Share this page

Abstract Human gammaD crystallin (HgammaD-Crys), a major component of the human eye lens, is a 173-residue, primarily beta-sheet protein, associated with juvenile and mature-onset cataracts. HgammaD-Crys has four tryptophans, with two in each of the homologous Greek key domains, which are conserved throughout the gamma-crystallin family. HgammaD-Crys exhibits native-state fluorescence quenching, despite the absence of ligands or cofactors. The tryptophan absorption and fluorescence quenching may influence the lens response to ultraviolet light or the protection of the retina from ambient ultraviolet damage. To provide fluorescence reporters for each quadrant of the protein, triple mutants, each containing three tryptophan-to-phenylalanine substitutions and one native tryptophan, have been constructed and expressed. Trp 42-only and Trp 130-only exhibited fluorescence quenching between the native and denatured states typical of globular proteins, whereas Trp 68-only and Trp 156-only retained the anomalous quenching pattern of wild-type HgammaD-Crys. The three-dimensional structure of HgammaD-Crys shows Tyr/Tyr/His aromatic cages surrounding Trp 68 and Trp 156 that may be the source of the native-state quenching. During equilibrium refolding/unfolding at 37 degrees C, the tryptophan fluorescence signals indicated that domain I (W42-only and W68-only) unfolded at lower concentrations of GdnHCl than domain II (W130-only and W156-only). Kinetic analysis of both the unfolding and refolding of the triple-mutant tryptophan proteins identified an intermediate along the HgammaD-Crys folding pathway with domain I unfolded and domain II intact. This species is a candidate for the partially folded intermediate in the in vitro aggregation pathway of HgammaD-Crys.
This article was published in Protein Sci and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords