alexa Probing mechanical properties of fully hydrated gels and biological tissues.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Constantinides G, Kalcioglu ZI, McFarland M, Smith JF, Van Vliet KJ

Abstract Share this page

Abstract A longstanding challenge in accurate mechanical characterization of engineered and biological tissues is maintenance of both stable sample hydration and high instrument signal resolution. Here, we describe the modification of an instrumented indenter to accommodate nanomechanical characterization of biological and synthetic tissues in liquid media, and demonstrate accurate acquisition of force-displacement data that can be used to extract viscoelastoplastic properties of hydrated gels and tissues. We demonstrate the validity of this approach via elastoplastic analysis of relatively stiff, water-insensitive materials of elastic moduli E>1000 kPa (borosilicate glass and polypropylene), and then consider the viscoelastic response and representative mechanical properties of compliant, synthetic polymer hydrogels (polyacrylamide-based hydrogels of varying mol\%-bis crosslinker) and biological tissues (porcine skin and liver) of E<500 kPa. Indentation responses obtained via loading/unloading hystereses and contact creep loading were highly repeatable, and the inferred E were in good agreement with available macroscopic data for all samples. As expected, increased chemical crosslinking of polyacrylamide increased stiffness (E40 kPa) and decreased creep compliance. E of porcine liver (760 kPa) and skin (222 kPa) were also within the range of macroscopic measurements reported for a limited subset of species and disease states. These data show that instrumented indentation of fully immersed samples can be reliably applied for materials spanning several orders of magnitude in stiffness (E=kPa-GPa). These capabilities are particularly important to materials design and characterization of macromolecules, cells, explanted tissues, and synthetic extracellular matrices as a function of spatial position, degree of hydration, or hydrolytic/enzymatic/corrosion reaction times. This article was published in J Biomech and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords