alexa Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kappaB and MAPK signalling.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Iyer C, Kosters A, Sethi G, Kunnumakkara AB, Aggarwal BB,

Abstract Share this page

Abstract The molecular mechanisms of pro-apoptotic effects of human-derived Lactobacillus reuteri ATCC PTA 6475 were investigated in this study. L. reuteri secretes factors that potentiate apoptosis in myeloid leukemia-derived cells induced by tumour necrosis factor (TNF), as indicated by intracellular esterase activity, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling assays and poly (ADP-ribose) polymerase cleavage. L. reuteri downregulated nuclear factor-kappaB (NF-kappaB)-dependent gene products that mediate cell proliferation (Cox-2, cyclin D1) and cell survival (Bcl-2, Bcl-xL). L. reuteri suppressed TNF-induced NF-kappaB activation, including NF-kappaB-dependent reporter gene expression in a dose-and time-dependent manner. L. reuteri stabilized degradation of IkappaBalpha and inhibited nuclear translocation of p65 (RelA). Although phosphorylation of IkappaBalpha was not affected, subsequent polyubiquitination necessary for regulated IkappaBalpha degradation was abrogated by L. reuteri. In addition, L. reuteri promoted apoptosis by enhancing mitogen-activated protein kinase (MAPK) activities including c-Jun N-terminal kinase and p38 MAPK. In contrast, L. reuteri suppressed extracellular signal-regulated kinases 1/2 in TNF-activated myeloid cells. L. reuteri may regulate cell proliferation by promoting apoptosis of activated immune cells via inhibition of IkappaBalpha ubiquitination and enhancing pro-apoptotic MAPK signalling. An improved understanding of L. reuteri-mediated effects on apoptotic signalling pathways may facilitate development of future probiotics-based regimens for prevention of colorectal cancer and inflammatory bowel disease. This article was published in Cell Microbiol and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version