alexa Processing of DNA for nonhomologous end-joining is controlled by kinase activity and XRCC4 ligase IV.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Budman J, Kim SA, Chu G

Abstract Share this page

Abstract Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. To repair the broken ends, NHEJ processes noncompatible ends into a ligatable form but suppresses processing of compatible ends. It is not known how NHEJ controls polymerase and nuclease activities to act exclusively on noncompatible ends. Here, we analyzed processing independently of ligation by using a two-stage assay with extracts that recapitulated the properties of NHEJ in vivo. Processing of noncompatible ends required wortmannin-sensitive kinase activity. Since DNA-dependent protein kinase catalytic subunit (DNA-PKcs) brings the ends together before undergoing activation of its kinase, this suggests that processing occurred after synapsis of the ends. Surprisingly, all polymerase and most nuclease activity required XRCC4/Ligase IV. This suggests a mechanism for how NHEJ suppresses processing to optimize the preservation of DNA sequence. This article was published in J Biol Chem and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords