alexa Production of 2,3-butanediol by engineered Saccharomyces cerevisiae.
Chemical Engineering

Chemical Engineering

Journal of Chromatography & Separation Techniques

Author(s): Kim SJ, Seo SO, Jin YS, Seo JH

Abstract Share this page

Abstract In order to produce 2,3-butanediol (2,3-BD) with a high titer, it is necessary to engineer Saccharomyces cerevisiae by deleting the competing pathway and overexpressing the 2,3-BD biosynthetic pathway. A pyruvate decarboxylase (Pdc)-deficient mutant was constructed and evolved for rapid glucose consumption without ethanol production. Genome re-sequencing of the evolved strain (SOS4) revealed a point mutation (A81P) in MTH1 coding for a transcriptional regulator involved in glucose sensing, unlike the previously reported Pdc-deficient mutant which had internal deletion in MTH1. When alsS and alsD genes from Bacillus subtilis, and endogenous BDH1 gene were overexpressed in SOS4, the resulting strain (BD4) not only produced 2,3-BD efficiently, but also consumed glucose faster than the parental strain. In fed-batch fermentation with optimum aeration, 2,3-BD concentration increased up to 96.2 g/L. These results suggest that S. cerevisiae might be a promising host for producing 2,3-BD for industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved. This article was published in Bioresour Technol and referenced in Journal of Chromatography & Separation Techniques

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version