alexa Production of Transgenic Medaka with Increased Resistance to Bacterial Pathogens
Agri and Aquaculture

Agri and Aquaculture

Fisheries and Aquaculture Journal

Author(s): Aliye Sarmasik

Abstract Share this page

Cecropins, first identified in silk moth (Hyalophora cecropia), are a group of antimicrobial peptides with bactericidal activity against a broad spectrum of bacteria. In this study we investigated whether (1) this group of antimicrobial peptides could exhibit bactericidal activity toward known fish bacterial pathogens and (2) expression of cecropin transgenes in transgenic medaka (Oryzias latipas) could result in increasing resistance of the transgenic fish to infection by fish bacterial pathogens. Cecropin gene construct containing silk moth preprocecropin B, procecropin B and cecropin B, and porcine cecropin P1 driven by a cytomegalovirus (CMV) promoter were transfected into chinook salmon embryonic cells (CHSE-214) by lipofection, and the resulting permanent transformants were collected. In an "inhibition zone" assay medium isolated from each transformant exhibited strong bactericidal activity toward known fish bacterial pathogens such as Pseudomonas fluorescens, Aeromonas hydrophila, and Vibrio anguillarum. The same cecropin transgene constructs were introduced into newly fertilized medaka eggs by electroporation to produce transgenic fish. About 40% to 60% of the embryos survived from electroporation, and about 5% to 11% of the surviving fish were shown to contain cecropin transgenes by polymerase chain reaction analysis of genomic DNA samples isolated from presumptive transgenic fish. These P1 transgenic fish were used as founder stocks, and following generations of successive breeding, a total of 20 F2 families of transgenic fish were established. Expression of cecropin transgenes was detected in the F2 transgenics by reverse transcriptase polymerase chain reaction analysis. Southern blot analysis of genomic DNA isolated from different F2 fish showed that cecropin transgenes were integrated into the genomes of F2 transgenic fish. To determine whether transgenic fish carrying cecropin transgenes could exhibit resistance to infection by known fish bacterial pathogens, F2 transgenic fish from different families and control fish were challenged with P. fluorescens and V. anguillarum at a 60% lethal dose. Challenge studies showed that while about 40% of the control fish were killed by both pathogens, only up to 10% of the F2 transgenic fish were killed by P. fluorescens and about 10% to 30% by V. anguillarum. These results clearly showed that the transgenic medaka carrying cecropin transgenes had acquired elevated resistance to bacterial infection.

This article was published in Marine Biotechnology and referenced in Fisheries and Aquaculture Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version