alexa Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease.
Medicine

Medicine

Translational Medicine

Author(s): Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A,

Abstract Share this page

Abstract BACKGROUND: Cell therapy with bone marrow-derived stem/progenitor cells is a novel option for improving neovascularization and cardiac function in ischemic heart disease. Circulating endothelial progenitor cells in patients with coronary heart disease are impaired with respect to number and functional activity. However, whether this impairment also extends to bone marrow-derived mononuclear cells (BM-MNCs) in patients with chronic ischemic cardiomyopathy (ICMP) is unclear. METHODS AND RESULTS: BM-MNCs were isolated from bone marrow aspirates in 18 patients with ICMP (ejection fraction, 38+/-11\%) and 8 healthy control subjects (controls). The number of hematopoietic stem/progenitor cells (CD34+/CD133+), CD49d(+) (VLA-4) cells, and CXCR4+ cells did not differ between the 2 groups. However, the colony-forming capacity of BM-MNCs from patients with ICMP was significantly lower compared with BM-MNCs from healthy controls (37.3+/-25.0 versus 113.8+/-70.4 granulocyte-macrophage colony-forming units; P=0.009). Likewise, the migratory response to stromal cell-derived factor 1 (SDF-1) and vascular endothelial growth factor (VEGF) was significantly reduced in BM-MNCs derived from patients with ICMP compared with BM-MNCs from healthy controls (SDF-1, 46.3+/-26.2 versus 108.6+/-40.4 cells/microscopic field, P<0.001; VEGF, 34+/-24.2 versus 54.8+/-29.3 cells/microscopic field, P=0.027). To assess the in vivo relevance of these findings, we tested the functional activity of BM-MNCs to improve neovascularization in a hindlimb animal model using nude mice. Two weeks after ligation of the femoral artery and intravenous injection of 5x10(5) BM-MNCs, laser Doppler-derived relative limb blood flow in mice treated with BM-MNCs from patients with ICMP was significantly lower compared with mice treated with BM-MNCs from healthy controls (0.45+/-0.14 versus 0.68+/-0.15; P<0.001). The in vivo neovascularization capacity of BM-MNCs closely correlated with the in vitro assessment of SDF-1-induced migration (r=0.78; P<0.001) and colony-forming capacity (r=0.74; P<0.001). CONCLUSIONS: BM-MNCs isolated from patients with ICMP have a significantly reduced migratory and colony-forming activity in vitro and a reduced neovascularization capacity in vivo despite similar content of hematopoietic stem cells. This functional impairment of BM-MNCs from patients with ICMP may limit their therapeutic potential for clinical cell therapy. This article was published in Circulation and referenced in Translational Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords