alexa Progenitor cell maintenance requires numb and numblike during mouse neurogenesis.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Petersen PH, Zou K, Hwang JK, Jan YN, Zhong W

Abstract Share this page

Abstract Neurons in most regions of the mammalian nervous system are generated over an extended period of time during development. Maintaining sufficient numbers of progenitors over the course of neurogenesis is essential to ensure that neural cells are produced in correct numbers and diverse types. The underlying molecular mechanisms, like those governing stem-cell self-renewal in general, remain poorly understood. We report here that mouse numb and numblike (Nbl), two highly conserved homologues of Drosophila numb, play redundant but critical roles in maintaining neural progenitor cells during embryogenesis, by allowing their progenies to choose progenitor over neuronal fates. In Nbl mutant embryos also conditionally mutant for mouse numb in the nervous system, early neurons emerge in the expected spatial and temporal pattern, but at the expense of progenitor cells, leading to a nearly complete depletion of dividing cells shortly after the onset of neurogenesis. Our findings show that a shared molecular mechanism, with mouse Numb and Nbl as key components, governs the self-renewal of all neural progenitor cells, regardless of their lineage or regional identities. This article was published in Nature and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords