alexa Property distribution of drug-related chemical databases.
Chemical Engineering

Chemical Engineering

Journal of Chemical Engineering & Process Technology

Author(s): Oprea TI

Abstract Share this page

Abstract The process of compound selection and prioritization is crucial for both combinatorial chemistry (CBC) and high throughput screening (HTS). Compound libraries have to be screened for unwanted chemical structures, as well as for unwanted chemical properties. Property extrema can be eliminated by using property filters, in accordance with their actual distribution. Property distribution was examined in the following compound databases: MACCS-II Drug Data Report (MDDR), Current Patents Fast-alert, Comprehensive Medicinal Chemistry, Physician Desk Reference, New Chemical Entities, and the Available Chemical Directory (ACD). The ACDF and MDDRF subsets were created by removing reactive functionalities from the ACD and MDDR databases, respectively. The ACDF subset was further filtered by keeping only molecules with a 'drug-like' score [Ajay et al., J. Med. Chem., 41 (1998) 3314; Sadowski and Kubinyi, J. Med. Chem., 41 (1998) 3325] below 0.8. The following properties were examined: molecular weight (MW), the calculated octanol/water partition coefficient (CLOGP), the number of rotatable (RTB) and rigid bonds (RGB), the number of rings (RNG), and the number of hydrogen bond donors (HDO) and acceptors (HAC). Of these, MW and CLOGP follow a Gaussian distribution, whereas all other descriptors have an asymmetric (truncated Gaussian) distribution. Four out of five compounds in ACDF and MDDRF pass the 'rule of 5' test, a probability scheme that estimates oral absorption proposed by Lipinski et al. [Adv. Drug Deliv. Rev., 23 (1997) 3]. Because property distributions of HDO, HAC, MW and CLOGP (used in the 'rule of 5' test) do not differ significantly between these datasets, the 'rule of 5' does not distinguish 'drugs' from 'nondrugs'. Therefore, Pareto analyses were performed to examine skewed distributions in all compound collections. Seventy percent of the 'drug-like' compounds were found between the following limits: 0 < or = HDO < or = 2, 2 < or = HAC < or = 9, 2 < or = RTB < or = 8, and 1 < or = RNG < or = 4, respectively. The number of launched drugs in MDDR having 0 < or = HDO < or = 2 is 4.8 times higher than the number of drugs having 3 < or = HDO < or = 5. Skewed distributions can be exploited to focus on the 'drug-like space': 62.68\% of ACDF ('nondrug-like') compounds have 0 < or = RNG < or = 2, and RGB < or = 17, while 28.88\% of ACDF compounds have 3 < or = RNG < or = 13, and 18 < or = RGB < or = 56. By contrast, 61.22\% of MDDRF compounds have RNG > or = 3, and RGB > or = 18, and only 24.73\% of MDDRF compounds have 0 < or = RNG < or = 2 rings, and RGB < or = 17. The probability of identifying 'drug-like' structures increases with molecular complexity.
This article was published in J Comput Aided Mol Des and referenced in Journal of Chemical Engineering & Process Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

agriaquaculture@omicsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

biochemjournals@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

chemistryjournals@omicsonline.com

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

clinicaljournals@omicsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringjournals@omicsonline.com

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

nutritionjournals@omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalscience@omicsonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolbio@omicsonline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immunomicrobiol@omicsonline.com

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealthcare@omicsonline.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljournals@omicsonline.com

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuropsychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

pharmajournals@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords