alexa Proportional assist ventilation decreases thoracoabdominal asynchrony and chest wall distortion in preterm infants.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

International Journal of Physical Medicine & Rehabilitation

Author(s): Musante G

Abstract Share this page

Thoracoabdominal asynchrony (TAA) and chest wall distortion (CWD) are commonly seen in preterm infants secondary to a highly compliant rib cage and poor compensation of distorting forces by inspiratory rib cage muscles. Continuous positive airway pressure (CPAP) reduces TAA and CWD by stenting the chest wall. We hypothesized that application of positive airway pressure only during inspiration and in proportion to an infant's inspiratory effort should have a similar but more pronounced effect than CPAP alone. A ventilator providing airway pressure changes in proportion to flow and volume generated by an infant (proportional assist ventilation) was used to unload the respiratory pump during inspiration. Ten preterm infants were studied [birth weight, 745 (635-1175) g; gestational age, 26.5 (24-31) wk; postnatal age 3 (1-7) d; medium (range)]. TAA and CWD were determined by respiratory inductive plethysmography. TAA was expressed as the phase angle between the rib cage and abdominal motion and CWD as the total compartmental displacement ratio. In addition, we measured tidal volume with a pneumotachograph and esophageal and airway pressure deflections with pressure transducers. Measurements were obtained during alternating periods of CPAP and two different degrees of support (Gain 1 = 1.09 +/- 0.68, Gain 2 = 1.84 +/- 0.84 cm H(2)O/mL) that were provided by a proportional assist ventilator. Phase angle and the total compartmental displacement ratio decreased with increasing gain compared with CPAP alone. Peak airway pressure increased from 0.6 to 3.8 to 7.6 cm H(2)O above positive end-expiratory pressure (PEEP) with CPAP, Gain 1, and Gain 2, respectively, as tidal volume increased from 2.8 to 4.1 to 4.7 mL/kg. Esophageal pressure changes decreased only little with increasing gain. Chest wall excursion increased and abdominal movement decreased, indicating a redistribution of tidal volume between chest and abdomen. We conclude that proportional assist ventilation reduces TAA and CWD by generating a small increase in airway pressure that occurs in synchrony and in proportion to each inspiratory effort.

This article was published in Pediatr Res and referenced in International Journal of Physical Medicine & Rehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords