alexa Protein inactivation in amorphous sucrose and trehalose matrices: effects of phase separation and crystallization.
Chemical Engineering

Chemical Engineering

Journal of Bioprocessing & Biotechniques

Author(s): Sun WQ, Davidson P

Abstract Share this page

Abstract Trehalose is the most effective carbohydrate in preserving the structure and function of biological systems during dehydration and subsequent storage. We have studied the kinetics of protein inactivation in amorphous glucose/sucrose (1:10, w/w) and glucose/trehalose (1:10, w/w) systems, and examined the relationship between protein preservation, phase separation and crystallization during dry storage. The glucose/trehalose system preserved glucose-6-phosphate dehydrogenase better than did the glucose/sucrose system with the same glass transition temperature (Tg). The Williams-Landel-Ferry kinetic analysis indicated that the superiority of the glucose/trehalose system over the glucose/sucrose system was possibly associated with a low free volume and a low free volume expansion at temperatures above the Tg. Phase separation and crystallization during storage were studied using differential scanning calorimetry, and three separate domains were identified in stored samples (i.e., sugar crystals, glucose-rich and disaccharide-rich amorphous domains). Phase separation and crystallization were significantly retarded in the glucose/trehalose system. Our data suggest that the superior stability of the trehalose system is associated with several properties of the trehalose glass, including low free volume, restricted molecular mobility and the ability to resist phase separation and crystallization during storage.
This article was published in Biochim Biophys Acta and referenced in Journal of Bioprocessing & Biotechniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 17th Euro Biotechnology Congress
    September 25-27, 2017 Berlin, Germany
  • 2nd World Biotechnology Congress
    December 04-06, 2017 Sao Paulo, Brazil

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords