alexa Protein kinase C activation: isozyme-specific effects on metabolism and cardiovascular complications in diabetes.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Idris I, Gray S, Donnelly R

Abstract Share this page

Abstract Protein kinase C (PKC) is a family of multifunctional isoenzymes, activated by diacylglycerols (DAGs), which play a central role in signal transduction and intracellular crosstalk by phosphorylating at serine/threonine residues an array of substrates, including cell-surface receptors, enzymes, contractile proteins, transcription factors and other kinases. Individual isozymes vary in their pattern of tissue and subcellular distribution, function and Ca2+/phospholipid cofactor requirements, and in diabetes there is widespread activation of the DAG-PKC pathway in metabolic, cardiovascular and renal tissues. In liver, muscle and adipose tissue, PKC isozymes have been implicated both as mediators and inhibitors of insulin action. Activation of DAG-sensitive PKC isoforms, such as PKC-theta and PKC-epsilon, down-regulates insulin receptor signalling and could be an important biochemical mechanism linking dysregulated lipid metabolism and insulin resistance in muscle. On the other hand, atypical PKC isozymes, such as PKC-zeta and PKC-lambda, have been identified as downstream targets of PI-3-kinase involved in insulin-stimulated glucose uptake, especially in adipocytes. Glucose-induced de novo synthesis of (palmitate-rich) DAG and sustained isozyme-selective PKC activation (especially but not exclusively PKC-beta) has been strongly implicated in the pathogenesis of diabetic microangiopathy and macroangiopathy through a host of undesirable effects on endothelial function, VSM contractility and growth, angiogenesis, gene transcription (in part by MAP-kinase activation) and vascular permeability. Interventions that increase DAG metabolism (e. g. vitamin E) and/or inhibit PKC isozymes (e. g. the beta-selective inhibitor LY333531) ameliorate the biochemical and functional consequences of DAG-PKC activation in experimental diabetes, for example improving retinal blood flow and albuminuria in parallel with reductions in membrane-associated PKC isozyme activities. Thus, a greater understanding of the functional diversity and pathophysiological regulation of PKC isozymes is likely to have important clinical and therapeutic benefits. This article was published in Diabetologia and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords