alexa Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Bosshard HR, Marti DN, Jelesarov I

Abstract Share this page

Abstract Salt bridges in proteins are bonds between oppositely charged residues that are sufficiently close to each other to experience electrostatic attraction. They contribute to protein structure and to the specificity of interaction of proteins with other biomolecules, but in doing so they need not necessarily increase a protein's free energy of unfolding. The net electrostatic free energy of a salt bridge can be partitioned into three components: charge-charge interactions, interactions of charges with permanent dipoles, and desolvation of charges. Energetically favorable Coulombic charge-charge interaction is opposed by often unfavorable desolvation of interacting charges. As a consequence, salt bridges may destabilize the structure of the folded protein. There are two ways to estimate the free energy contribution of salt bridges by experiment: the pK(a) approach and the mutation approach. In the pK(a) approach, the contribution of charges to the free energy of unfolding of a protein is obtained from the change of pK(a) of ionizable groups caused by altered electrostatic interactions upon folding of the protein. The pK(a) approach provides the relative free energy gained or lost when ionizable groups are being charged. In the mutation approach, the coupling free energy between interacting charges is obtained from a double mutant cycle. The coupling free energy is an indirect and approximate measure of the free energy of charge-charge interaction. Neither the pK(a) approach nor the mutation approach can provide the net free energy of a salt bridge. Currently, this is obtained only by computational methods which, however, are often prone to large uncertainties due to simplifying assumptions and insufficient structural information on which calculations are based. This state of affairs makes the precise thermodynamic quantification of salt bridge energies very difficult. This review is focused on concepts and on the assessment of experimental methods and does not cover the vast literature. Copyright 2004 John Wiley & Sons, Ltd. This article was published in J Mol Recognit and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords