alexa Protein unfolding, and the "tuning in" of reversible intermediate states, in protic ionic liquid media.
Chemistry

Chemistry

Chemical Sciences Journal

Author(s): Byrne N, Angell CA

Abstract Share this page

Abstract Protic ionic liquids (PILs) are currently being shown to be as interesting and valuable to chemical manipulations as the well-known aprotic ionic liquids (APIL). PILs have the additional advantage that the proton activity (PA) can be adjusted by the choice of Bronsted base and Bronsted acid used in their formation. In the absence of solvent, the PA plays the role of pH in ordinary solutions. Previously, we have shown that solution of proteins in ionic-liquid-rich solutions conveys surprising stabilization against hydrolysis and aggregation, permitting multiple unfold/refold cycles without loss to aggregation. Here, we show that the denaturing temperatures of both hen egg white lysozyme and ribonuclease A are sensitive to the PA of the PIL as much as they are to pH in aqueous solutions. A maximum stability for more basic solutions is found, and the unfolding process is well described by the two-state (cooperative) model. Finally, we show that, by PA tuning, the PILs can select folding pathways featuring the postulated intermediates so that they are fully populated during the unfolding process. The intermediates are themselves capable of multiple unfold/refold cycles with little loss per cycle to aggregation process. This article was published in J Mol Biol and referenced in Chemical Sciences Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords