alexa Proton in the well and through the desolvation barrier.
Veterinary Sciences

Veterinary Sciences

Research & Reviews: Journal of Veterinary Sciences

Author(s): Mulkidjanian AY

Abstract Share this page

Abstract The concept of the membrane proton well was suggested by Peter Mitchell to account for the energetic equivalence of the chemical (DeltapH) and electrical (Deltapsi) components of the proton-motive force. The proton well was defined as a proton-conducting crevice passing down into the membrane dielectric and able to accumulate protons in response to the generation either of Deltapsi or of DeltapH. In this review, the concept of proton well is contrasted to the desolvation penalty of > 500 meV for transferring protons into the membrane core. The magnitude of the desolvation penalty argues against deep proton wells in the energy-transducing enzymes. The shallow DeltapH- and Deltapsi-sensitive proton traps, mechanistically linked to the functional groups in the membrane interior, seem more realistic. In such constructs, the draw of a trapped proton into the membrane core can happen at the expense of some exergonic reaction, e.g., release of another proton from the membrane into the aqueous phase. It is argued that the proton transfer in the ATP synthase and the cytochrome bc complex could proceed in this way. This article was published in Biochim Biophys Acta and referenced in Research & Reviews: Journal of Veterinary Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords