alexa Proton in the well and through the desolvation barrier.
Veterinary Sciences

Veterinary Sciences

Research & Reviews: Journal of Veterinary Sciences

Author(s): Mulkidjanian AY

Abstract Share this page

Abstract The concept of the membrane proton well was suggested by Peter Mitchell to account for the energetic equivalence of the chemical (DeltapH) and electrical (Deltapsi) components of the proton-motive force. The proton well was defined as a proton-conducting crevice passing down into the membrane dielectric and able to accumulate protons in response to the generation either of Deltapsi or of DeltapH. In this review, the concept of proton well is contrasted to the desolvation penalty of > 500 meV for transferring protons into the membrane core. The magnitude of the desolvation penalty argues against deep proton wells in the energy-transducing enzymes. The shallow DeltapH- and Deltapsi-sensitive proton traps, mechanistically linked to the functional groups in the membrane interior, seem more realistic. In such constructs, the draw of a trapped proton into the membrane core can happen at the expense of some exergonic reaction, e.g., release of another proton from the membrane into the aqueous phase. It is argued that the proton transfer in the ATP synthase and the cytochrome bc complex could proceed in this way. This article was published in Biochim Biophys Acta and referenced in Research & Reviews: Journal of Veterinary Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version