alexa Purification and characterization of three thermostable endochitinases of a noble Bacillus strain, MH-1, isolated from chitin-containing compost.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Sakai K, Yokota A, Kurokawa H, Wakayama M, Moriguchi M

Abstract Share this page

Abstract A thermophilic and actinic bacterium strain, MH-1, which produced three different endochitinases in its culture fluid was isolated from chitin-containing compost. The microorganism did not grow in any of the usual media for actinomyces but only in colloidal chitin supplemented with yeast extract and (2, 6-O-dimethyl)-beta-cyclodextrin. Compost extract enhanced its growth. In spite of the formation of branched mycelia, other properties of the strain, such as the formation of endospores, the presence of meso-diaminopimelic acid in the cell wall, the percent G+C of DNA (55\%), and the partial 16S ribosomal DNA sequence, indicated that strain MH-1 should belong to the genus Bacillus. Three isoforms of endochitinase (L, M, and S) were purified to homogeneity and characterized from Bacillus sp. strain MH-1. They had different molecular masses (71, 62, and 53 kDa), pIs (5.3, 4.8, and 4.7), and N-terminal amino acid sequences. Chitinases L, M, and S showed relatively high temperature optima (75, 65, and 75 degreesC) and stabilities and showed pH optima in an acidic range (pH 6.5, 5.5, and 5.5, respectively). When reacted with acetylchitohexaose [(GlcNAc)6], chitinases L and S produced (GlcNAc)2 at the highest rate while chitinase M produced (GlcNAc)3 at the highest rate. None of the three chitinases hydrolyzed (GlcNAc)2. Chitinase L produced (GlcNAc)2 and (GlcNAc)3 in most abundance from 66 and 11\% partially acetylated chitosan. The p-nitrophenol (pNP)-releasing activity of chitinase L was highest toward pNP-(GlcNAc)2, and those of chitinases M and S were highest toward pNP-(GlcNAc)3. All three enzymes were inert to pNP-GlcNAc. AgCl, HgCl2, and (GlcNAc)2 inhibited the activities of all three enzymes, while MnCl2 and CaCl2 slightly activated all of the enzymes.
This article was published in Appl Environ Microbiol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords