alexa Purification of 3 monomeric monocot mannose-binding lectins and their evaluation for antipoxviral activity: potential applications in multiple viral diseases caused by enveloped viruses.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Kaur A, Kamboj SS, Singh J, Singh R, Abrahams M,

Abstract Share this page

Abstract Three monomeric monocot lectins from Zephyranthes carinata, Zephyranthes candida, and Gloriosa superba with carbohydrate specificity towards mannose derivatives and (or) oligomannose have been isolated and purified from their storage tissues. The lectins were purified by anion-exchange chromatography on DEAE-Sephacyl and by gel filtration chromatography on Biogel P-200 followed by high-performance liquid chromatography. The purified lectins, Z. carinata, Z. candida, and G. superba had molecular masses of 12, 11.5, and 12.5 kDa, respectively, as determined by gel filtration and SDS-PAGE, indicating that they are monomers. In a hapten inhibition assay, methyl-alpha-D-mannopyranoside inhibited agglutination of both Z. candida and Z. carinata; the latter was also inhibited by Man(alpha1-2)Man and Man(alpha1-3)Man. Gloriosa superba showed inhibition only with Man(alpha1-4)Man of all of the sugars and glycoproteins tested. All purified lectins agglutinated red blood cells from rabbit, whereas G. superba was also reactive towards erythrocytes from guinea pig. All of the lectins were nonglycosylated and did not require metal ions for their activity. They were labile above 60 degrees C and were affected by denaturing agents such as urea, thiourea, and guanidine-HCl. The lectins were virtually nonmitogenic, like other members of Amaryllidaceae and Liliaceae. Of the 3 lectins, G. superba was found to be highly toxic to the BSC-1 cell line (African green monkey kidney epithelial cells), while both of the Zephyranthes species showed significant in vitro inhibition of poxvirus replication in BSC-1 cells without any toxic effects to the cells. In addition, Z. candida also exhibited significant anticancer activity against SNB-78, a CNS human cancer cell line. This article was published in Biochem Cell Biol and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version