alexa Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Degenhardt TP, Alderson NL, Arrington DD, Beattie RJ, Basgen JM

Abstract Share this page

Abstract BACKGROUND: Nonenzymatic reactions between sugars or lipids and protein and formation of advanced glycation and lipoxidation end products (AGE/ALEs) contribute to the chemical modification and cross-linking of tissue proteins with age. Accelerated formation of AGE/ALEs during hyperglycemia is implicated in the development of diabetic complications. In this study, we examined the effect of the AGE/ALE inhibitor pyridoxamine on chemical modification and cross-linking of collagen and development of renal disease in the streptozotocin-diabetic rat. METHODS: Diabetic rats were treated with pyridoxamine; parallel experiments were conducted with aminoguanidine, the prototype AGE inhibitor. Progression of renal disease was evaluated by measurements of albuminuria and plasma creatinine concentration. Plasma triglycerides, cholesterol, lactate and pyruvate were measured by enzymatic assays, and AGE/ALEs in skin collagen by HPLC and GC-MS assays. RESULTS: Pyridoxamine significantly inhibited the increase in albuminuria, plasma creatinine, hyperlipidemia and plasma lactate/pyruvate ratio in diabetic rats, without an effect on blood glucose or glycated hemoglobin. AGE/ALEs, fluorescence and cross-linking of skin collagen increased approximately twofold in diabetic versus control rats after seven months of diabetes. Pyridoxamine caused a significant (25 to 50\%) decrease the AGE/ALEs, carboxymethyllysine and carboxyethyllysine, cross-linking and fluorescence in skin collagen of diabetic rats, but did not affect pentosidine. CONCLUSIONS: Pyridoxamine inhibits the progression of renal disease, and decreases hyperlipidemia and apparent redox imbalances in diabetic rats. Pyridoxamine and aminoguanidine had similar effects on parameters measured, supporting a mechanism of action involving AGE/ALE inhibition.

This article was published in Kidney Int and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version