alexa Quantification of cerebellar hemispheric purkinje cell linear density: 32 ET cases versus 16 controls.


Journal of Multiple Sclerosis

Author(s): Louis ED, Babij R, Lee M, Corts E, Vonsattel JP, Louis ED, Babij R, Lee M, Corts E, Vonsattel JP

Abstract Share this page

Abstract Although essential tremor (ET) is among the most prevalent neurological diseases, its precise pathogenesis is not understood. Purkinje cell loss has been observed in some studies and is the focus of interest and debate. Expressing these data as Purkinje cells/layer length allows one to adjust for the inherent curved nature of the cerebellar folia. Capitalizing on the Essential Tremor Centralized Brain Repository, we quantified Purkinje cell linear density in cases versus controls. Free-floating 100-μm parasagittal cerebellar hemispheric sections were subjected to rabbit polyclonal anti-Calbindin D28k antibody, and 10 random fields/brain were selected for quantification of Purkinje cells/mm(-1) Purkinje cell layer. Purkinje cell linear density was lower in 32 ET cases than in16 controls (1.14 ± 0.32 vs. 1.35 ± 0.31/mm(-1) , P = 0.03). Purkinje cell linear density was inversely associated with torpedo count (r = -0.38, P = 0.028). The current sample of ET cases demonstrates a reduction in Purkinje cell number relative to that of controls. Greater Purkinje cell axonal remodeling (torpedoes) was found in individuals who had the most Purkinje cell drop out. The role of Purkinje cell loss in the pathogenesis of this disorder merits additional study. © 2013 International Parkinson and Movement Disorder Society.
This article was published in Mov Disord and referenced in Journal of Multiple Sclerosis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version