alexa Quantification of radiation dose from short – lived positron Emitters formed in human tissues under proton therapy conditions.


Research & Reviews: Journal of Pure and Applied Physics

Author(s): Kettern K

Abstract Share this page

The dose distribution in proton therapy is mainly due to primary particles and secondary electrons. The contribution of short-lived β+ emitters formed in the interactions of protons with the light mass elements C, N and O has hitherto not been considered. We estimated the formation of 11C, 13N and 15O in irradiation of tissue with 200 MeV protons. The integral yields at 150 MeV were compared with a literature phantom measurement. The results for 11C and 15O agreed very well; for 13N, however, appreciable deviation was observed. The activities were also calculated in the region around the Bragg peak as well as over the path length after entrance of the beam. Dose calculations were then done using the medical internal radiation dose (MIRD) formalism. Furthermore, a dose calculation was simulated for a 150 MeV proton beam (2 nA, 2 min) in a brain tumour. The dose deposited by the positron emitters in the Bragg peak region was found to be about 1.5 mGy, i.e. less than 1% of the dose estimated from the electronic interactions of protons. The absorbed dose in the whole brain amounted to 5.5 mGy.

  • To read the full article Visit
  • Subscription
This article was published in Radiation Physics and Chemistry and referenced in Research & Reviews: Journal of Pure and Applied Physics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version