alexa Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Sacks MS, Gloeckner DC

Abstract Share this page

Abstract Porcine small intestinal submucosa (SIS) has been shown to serve as a remodelable tissue scaffold in a wide range of applications. Despite the large number of experimental studies, there is a lack of fundamental information on SIS anisotropic mechanical behavior and how this behavior changes postimplantation. As a first step in our study of remodeling biomaterials, we performed biaxial mechanical testing to quantify the anisotropic mechanical behavior and used small-angle light scattering (SALS) to quantify the gross fiber structure of fresh, unimplanted SIS. Structural results indicate that SIS displays primarily a single, continuous preferred fiber direction oriented parallel to the long axis of the intestine. Occasionally, two distinct fiber populations oriented at approximately +/-28 degrees with respect to the longitudinal axis could be distinguished. Consistent with this structure, SIS exhibited a nonlinear, anisotropic mechanical response with higher stresses along the longitudinal axis. Further, the circumferential stress-strain response was strongly affected by the maximum longitudinal strain level, but the maximum circumferential strain level only weakly affected the longitudinal stress-strain response. This asymmetric mechanical coupling suggests strong mechanical interactions on a fiber level. SIS stress-strain response also was similar to glutaraldehyde-treated bovine pericardium, attesting to the substantial strength of SIS in the fresh, untreated state. The results of this study will provide a basis for a future analysis of the structural and mechanical changes during the remodeling process.
This article was published in J Biomed Mater Res and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version