alexa Quantitation of Na K ATPase pump sites in the rabbit corneal endothelium.
Pathology

Pathology

Journal of Molecular Histology & Medical Physiology

Author(s): Geroski DH, Edelhauser HF

Abstract Share this page

Abstract In these experiments, the binding of 3H . ouabain, a specific inhibitor of Na/K ATPase, was used to quantitate the density of Na/K ATPase pump sites in the rabbit corneal endothelium. The uptake of ouabain by the corneal endothelium shows two components: one that saturates at a ouabain concentration near 2 X 10(-7) M (specific binding), and one component that increases linearly with increasing glycoside concentration (nonspecific uptake). The nonspecific uptake can be accounted for by that ouabain equilibrating with the extracellular space, which, estimated by inulin space, amounts to 13.0 nl/mm2 of endothelium. The saturable component of endothelial ouabain uptake is displaced by K+ ions, which is consistent with this fraction being bound to Na/K ATPase. Maximal endothelial ouabain binding was measured as 20.7 fmoles/mm2 of endothelium, which corresponds to 3.0 X 10(6) pump sites per cell. The density of Na/K ATPase pump sites in the rabbit corneal endothelium is comparable to densities reported for several transporting epithelia. These data are consistent with the known function of the endothelium in corneal deturgescense and corroborate the importance of Na/K ATPase in endothelial fluid transport.
This article was published in Invest Ophthalmol Vis Sci and referenced in Journal of Molecular Histology & Medical Physiology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version