alexa Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint
Medicine

Medicine

General Medicine: Open Access

Author(s): von Eisenhart R, Adam C, Steinlechner M, MllerGerbl M, Eckstein F

Abstract Share this page

The objective of this study was to provide quantitative data on hip-joint incongruity and pressure during a simulated walking cycle and on articular-cartilage thickness in the same set of specimens. Using a casting technique in eight specimens of the human hip (age: 18-75 years), we determined the width of the joint space (incongruity) required at minimal load for contact at four phases of the gait cycle. The pressure distribution, measured with pressure-sensitive film, was determined at physiologic load magnitudes on the basis of in vivo measurements of hip-joint forces. Cartilage thickness was assessed with A-mode ultrasound. At minimal loading, the average maximum width of the joint space ranged from 1.1 to 1.5 mm in the acetabular roof, with the contact areas located ventro-superiorly and dorso-inferiorly throughout the gait cycle. At physiological loading, the width decreased and the contact areas covered the complete articular surface during midstance and heel-off but not during heel-strike or toe-off. The pressure distribution was inhomogeneous during all phases, with average maximum pressures of 7.7 +/- 1.95 MPa at midstance. The cartilage thickness varied considerably throughout the joint surfaces; maxima greater than 3 mm were found ventro-superiorly. These data can be used to generate and validate computer models to determine the load-sharing between the interstitial fluid and the solid proteoglycan-collagen matrix of articular cartilage, the latter being relevant for the initiation of mechanically induced cartilage degeneration.

This article was published in Journal of Orthopaedic Research and referenced in General Medicine: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords