alexa Quantitative MR imaging study of intravitreal sustained release of VEGF in rabbits.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Alikacem N, Yoshizawa T, Nelson KD, Wilson CA

Abstract Share this page

Abstract PURPOSE: To determine whether sustained elevation of vascular endothelial growth factor (VEGF) in the vitreous cavity causes retinal hyperpermeability [blood-retinal barrier (BRB) breakdown] before the development of retinal neovascularization (NV) and to document the kinetics of the integrity of BRB breakdown versus time. METHODS: Poly(L-lactide-co-glycolide)based devices loaded with VEGF were implanted intravitreally in rabbit eyes. Contrast-enhanced magnetic resonance imaging (MRI) methods were used to identify and quantitate the retinal permeability at various time points after implantation. This was done with the newly developed MR tracer AngioMARK (Epix Medical, Boston, MA). After the MRI measurements, fundus photography and fluorescein angiography (FA) also were performed on the same set of animals. RESULTS: At 3 days after implantation, the MR images showed a significant retinal leakage into the vitreous cavity (BRB breakdown) of the VEGF-implanted eyes. To quantitate this leakage, the permeability surface area product (PS) was measured. At 3 days, the mean PS product was 1.25 +/-0.25 x 10(-5) cm3/min. Based on the VEGF in vitro release study, this 3-day BRB breakdown corresponded to a total sustained release of 7.42 +/- 0.54 microg/ml of VEGF. The fundus and FA photographs of these VEGF-implanted eyes taken at 4 days after implantation also showed a considerable level of retinal vascular dilation and tortuosity. By 12 days after implantation, the mean PS product decreased to 5.83 +/- 1.38 x 10(-6) cm3/min. However, the retinal NV was observed only after the second week after implantation. By this time, a total of 10.70 +/- 0.92 microg/ml of VEGF was released in a sustained fashion. Also, after the retinal NV development, retinal detachment also was observed. The control eyes, however, which were implanted with blank devices, remained unchanged and normal during the entire course of this study (PS = 5.57 +/- 0.66 x 10(-7) cm3/min). CONCLUSIONS. The findings indicate that sustained delivery of elevated amounts of VEGF in the vitreous cavity induces a BRB breakdown even earlier than 3 days after implantation. This was achieved after a total sustained release of 7.42 +/- 0.54 microg/ml of VEGF. This retinal leakage regressed by more than half by the time the retinal NV developed. Furthermore, a retinal detachment occurred after this retinal NV. These results are similar to proliferative diabetic retinopathy (PDR). The sustained elevation of VEGF in the vitreous cavity of rabbit eyes is potentially a good model to test VEGF antagonists to treat or prevent PDR in humans. The quantifiable change of BRB breakdown by the contrast-enhanced MRI method is ideal to assess the therapeutic intervention in vivo without killing the animal and may prove to be clinically useful in humans.
This article was published in Invest Ophthalmol Vis Sci and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd Antibodies and Bio Therapeutics Congress & B2B
    November 08-09, 2017 Las Vegas, Nevada, USA
  • 19th World Congress on Biotechnology
    November 13-14, 2017 Osaka, Japan
  • 4th World Conference on Synthetic Biology and Genetic Engineering
    November 9-10, 2017 Singapore City, Singapore

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords